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Beyond a short transition region near the inlet, waves on a falling film evolve into 
distinct pulse-like solitary waves that dominate all subsequent interfacial dynamics. 
Numerical and physical experiments indicate that these localized structures can at- 
tract and repel each other. Attractive interaction through the capillary ripples of 
the pulses causes two pulses to coalesce into a bigger pulse which accelerates and 
precipitates further coalescence. This binary interaction between an ‘excited‘ pulse 
after coalescence and its smaller front neighbour is the key mechanism that drives 
the observed wave dynamics. From symmetry arguments, two dominant modes for a 
solitary pulse are obtained and used to develop an inelastic coherent structure theory 
for binary interaction between an excited pulse and its front neighbour. The theory 
offers a simple dynamical system that quantitatively describes the binary interaction 
and promises to elucidate the complex wave dynamics on a falling film. 

1. Introduction 
Unlike many other hydrodynamic systems, the nearly sinusoidal waves at the 

inception region of a falling film evolve downstream into wave structures with a 
drastically different shape. The sinusoidal waves trigger their subharmonics and other 
(sideband) modes and all these harmonics synchronize to form distinct localized pulses 
or ‘humps’ which travel steadily at approximately constant speeds over a distance 
long compared to the pulse width. Unlike the sinusoidal waves, each individual pulse 
has a broad Fourier content but all the Fourier harmonics are phase-locked. As a 
result, one cannot study the dynamics of these ‘solitary waves’ using the classical 
Ginzburg-Landau-type amplitude formulation which considers only a small band 
of harmonics near criticality. Liu & Gollub (1993) have recently scrutinized this 
evolution to solitary waves experimentally and Cheng & Chang (1995) have offered a 
theoretical classification of the secondary instabilities of the sinusoidal waves which 
trigger the evolution towards the solitary waves. 

These solitary waves will eventually develop transverse variations which pinch off 
their crests to form crescent-shaped waves called ‘scallop waves’ and other localized 
three-dimensional wave structures (Chang et al. 1994; Liu & Gollub 1994). However, 
for a very large region, which is much larger than the sinusoidal wave region 
and whose domain size increases with increasing inclination angle from vertical, 
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RGURE 1. Snapshot of the evolving waves from a numerical simulation of the averaged equation 
at 6 = 0.217. Random forcing is placed at the inlet and a 'soft' boundary condition is placed at the 
exit to minimize upstream feedback from there. 

the interfacial dynamics is dominated by interaction among the two-dimensional 
pulses. In $2, we perform some numerical experiments to clarify the dynamics in this 
important region and to obtain quantitative characterizations of the dynamics that 
have not been measured in physical experiments. It will be demonstrated that the 
pulse dynamics is dominated by a binary interaction which is best explained by a 
coherent structure theory that is capable of describing the important phenomenon 
of coalescence. The theory is preceded by an investigation of the spectrum of the 
solitary pulse in $3 where the dominant modes of the pulses that are excited during the 
interaction and how they are related to the symmetries of the system are delineated. 
The full theory is developed in $4 which also offers a quantitative comparison of the 
theoretical prediction against numerical data to demonstrate the validity of the simple 
theory to describe pulse interaction dynamics. A discussion on possible extensions is 
presented in the final $5. 

2. Numerical experiments 
The evolution from the sinusoidal waves near the inception region to solitary pulses 

which interact over a very large domain is clearly evident in our numerical simulation 
shown in figure 1. Unlike earlier studies, a periodic boundary condition is not assumed 
here. Instead, we have developed a code that can capture the downstream convective 
nature of the wave evolution. The complete Navier-Stokes equation still escapes 
the computational capability of our code and we use instead the ad hoc averaged 
equations, first derived by Shkadov (1967) and known sometimes as the Kapitsa- 
Shkadov equation, for the vertical film where the velocity profile beneath the film is 
assumed to be of a parabolic form (see Chang 1994 for a review of this equation) 

The interfacial height is h and the average flow rate is q.  The lone parameter 6 is 
a normalized Reynolds or inverse Weber number defined by 6 = R"/9/5y'/337/9 = 
R/15ic where R = (u)hN/v  is the Reynolds number based on the average fluid 
velocity (u) = g h i / 3 v ,  hN is the Nusselt flat-film thickness and v is the kinematic 
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viscosity of the fluid. The Kapitza number y = WR5/3/31/3 = ~ v - ~ / ~ g - ' / ~ / p  is only a 
function of the fluid properties and not a function of the flow rate. The parameter 
W = r ~ / p ( u ) ~ h ~  is the Weber number. The parameter IC is a large number defined 
by I C ~  = WR/3. In the averaged equation, the downstream velocity is scaled by (u) 
and the interfacial height by h ~ .  The transverse velocity is, however, scaled by ( u ) I c - ~ ,  
the downstream coordinate by ~ N I C  and time by ~ N I C / ( U )  to reflect the nearly parallel, 
long-wave and slow evolution character of the wave dynamics. Speed is then scaled 
by the average fluid velocity (u)  of a flat film. At low 6, inertia becomes secondary 
and more rigorous long-wave expansion of the equations of motion at low Reynolds 
number leads to evolution equations (known sometimes as Benny's equations) that 
involve only the interfacial height h. The flow rate is removed by a quasi-steady 
approximation of the flow under the interface. Although these equations are simpler 
and more rigorous (they also have some limitations, see Chang 1994), we have avoided 
them here because they do not yield the observed solitary wave solutions at high 
flow rates (Pumir,Manneville & Pomeau 1983; Chang 1994; Salamon,Armstrong & 
Brown 1994). Also, as we shall demonstrate subsequently, solitary pulses are unstable 
to local disturbances at low flow rates and they tend to split up. The solitary wave 
dynamics at low flow rate (lubrication conditions) is hence quite different from that 
at higher flow rates. (See numerical studies by Pumir et al. 1983 and by Kalliadasis 
& Chang 1994, for a related problem). The averaged equation is a simple model 
equation which is believed to reproduce all the pertinent dynamics qualitatively at 
the high flow rate regimes and even offer some surprising quantitative accuracy for 
6 < 0.1 (Demekhin, Kaplan & Shkadov 1987). It also reduces to the Kuramoto- 
Sivashinsky(KS) evolution equation if a long-wave expansion is carried out at low 
flow rates (Chang, Demekhin & Kopelevich 1993a) for vanishingly small 6 and wave 
amplitude, 

(2.2) H, -k 4HHt -k Hte -k Htett = 0 

where H,r and z are the scaled interfacial height, downstream position and time, 
respectively, H = 3(h-1)/24,( = (x-3t)h and z = $t. The parameter Q = (186)1/2 
is the neutral wavenumber in the limit of vanishing 6. If the averaged equations (2.1) 
are used insead of the full equations of motion, the ad hoc parabolic velocity 
profile yields Q = (156)'12. The above scaling is the usual amplitude shrinking, 
length and time stretching of a weakly nonlinear analysis for the four terms in 
(2.2) (representing evolution, kinematic nonlinearity, inertial growth and capillary 
'dissipation') to balance. We note that, owing to the scaling in ( and z, the speed of a 
stationary solitary pulse 2 of (2.2) is related to the speed C* of a solitary pulse of (2.1) 
by 2 = (c' - 3)/ai. Since the parameter 6 has been absorbed in the KS equation, a 
single solitary pulse solution to (2.2) actually represents an entire family of pulses to 
(2.1) parameterized by 6, as one transforms back to the coordinates of (2.1). Demekhin 
& Shdadov (1986) and Kawahara & Toh (1988) have shown that the KS equation 
(2.2) does have a unique single-hump solitary pulse (see also Chang 1986; Chang et 
al. 1993a) and hence a one-parameter family of solitary pulse exists for (2.1) in the 
limit when the KS equation holds. This family will be constructed subsequently and 
extended beyond the limit of small-amplitude waves of the KS equation. The shape, 
speed and amplitude of each member of this family differ. However, since the KS 
scaling for 2 and H are the same with respect to Q, the ratio (c' - 3)/(hm - l), where 
h, - 1 is the amplitude of the solitary pulse, should be independent of 6 for the family 
generated by the KS solitary pulse. This remains a good approximation even beyond 
the KS limit of small-amplitude waves. In fact, Chang,Demekhin & Kopelevich 
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(1993b) showed that H / 2  for the KS solitary wave is about 1.5 and we hence expect 
(c* - 3)/(hm - 1) of the solitary pulse family of the averaged equation to be about 2.25. 

For simplicity, we have considered only the case of a vertically falling film. Averaged 
equations can also be derived for inclined films (Prokopiou, Cheng & Chang 1991). 
The inclination angle has the important effect of allowing gravity to stabilize the film. 
The stabilization occurs at several stages. The primary instability is suppressed by 
gravity and it requires significantly more inertia to trigger the onset of waves. More 
specifically, the critical Reynolds number scales as tan8 where 8 is the inclination 
angle measured from the vertical. The nonlinear evolution beyond onset is also slowed 
signficantly because of this gravitational stabilization. For example, the thicker film at 
onset introduces the gravity-capillary dispersion mechanism of deep water waves and 
this enhanced dispersion delays the synchronization (phase locking) of the Fourier 
modes to form solitary waves (Cheng & Chang 1995). Once formed, however, the 
solitary waves tend to be less susceptible to transverse disturbances. This is because 
the transverse variation is triggered by a Rayleigh capillary instability at the crest 
of the solitary pulse and the intensity of this instability is determined by the crest 
curvature which scales as the inverse of the pulse width. The latter is determined by 
a balance between capillary smoothing and gravitational steepening. On an inclined 
plane, the gravitational steepening effect is weaker. The pulse is hence wider and 
the transverse Rayleigh instability less intense. This is why many solitary wave 
experiments are carried out on an inclined plane (Liu & Gollub 1994). However, 
the slower dynamics on an incline also implies that some of the rich solitary wave 
dynamics described here can only be observed on a very long plane. To reduce 
computational effort, we have restricted ourselves to a vertically falling film but have 
also neglected the transverse secondary instability which will eventually destroy the 
solitary waves (Chang et al. 1994). 

For a given 6 value, we have imposed random forcing at the inlet in figure 1 at 
x = 0, and by x = 200 distinct solitary pulses have formed and the thickness of 
the substrate layer has been considerably reduced relative to the original Nusselt 
flat film, which has been scaled to unity, at the inlet. Each individual pulse travels 
in a stationary manner over a distance much larger than the pulse width w (- 50 
units in figure 1) as shown by the'world lines' of figure 2. However, its speed and 
amplitude do evolve slowly over a length scale far larger than the pulse width. The 
most dramatic phenomenon, however, is that the solitary pulses can be annihilated 
when two pulses coalesce to form a single large pulse, as was first observed in Liu & 
Gollub's (1994) experiments. Two pulses close to coalescence are observed at x = 380 
in the snapshot of figure 1 and a large pulse formed after a coalescence is seen 
immediately downstream. These coalescence phenomena are also evident from the 
world lines in figure 2. It is the coalescence, which converts two pulses into a large one, 
that causes the average pulse speed, pulse amplitude and separation between pulses 
to increase downstream. Stainthorp & Allen (1965) and our recent measurements 
have experimentally confirmed the increase in the average wave velocity. The increase 
in average amplitude is evident in figure 1 since the mass-carrying pulses become 
larger as their number diminishes. We have also obtained the average separation 
at every station from our numerical experiment. The result shown in figure 2 
clearly demonstrates a linear increase downstream. Further downstream, however, 
the average separation approaches an equilibrium value beyond which coalescence 
ceases to occur and no further increase in the average separation, speed or amplitude 
is observed. 

To further understand this solitary pulse evolution dynamics, we have numerically 
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FIGURE 2. (a) The average separation between pulses as a function of position in real units for the 
numerical experiment of figure 1. (b) The world lines tracking the pulses of figure 1 in the space 
(x)-time ( t )  coordinates of the averaged equation. At 6 = 0.217 for water, K: = 6 . 8 , h ~  = 0.014 cm 
and (u) = 6.5 cm s-l. This yields a downstream length scale of K ~ N  = 0.1 cm and a time scale of 
~ N K / ( u )  = 0.015 S. 

constructed the solitary pulse solution to (1) in the moving frame x - cot as shown 
in figure 3. These solitary pulse solutions approach at infinity the Nusselt flat-film 
solution, which has been scaled to unity, h'(x -+ fa) = 1, and are described by 

(2.3) 

aq 6 a 1 
ax 5 a x  5s 

-c- + - - (q2/h)  - -(hh, + h - q / h 2 )  = 0, 

-c- + - = 0. ah aq 
ax ax 

where the * has been omitted for convenience. One can consider the solitary wave 
solutions as homoclinic orbits in the phase space of (h', h:, h'=, 4' )  which connect 
the fixed point (l,O,O,l) to itself (Demekhin & Shkadov 1985). If one integrates the 
kinematic equation to yield 

(2.4) 
the averaged flow rate q' can then be eliminated and the phase space is reduced to 
(h',h:,h$). The linearized Jacobian about the fixed point (1,0,0) yields the spatial 
eigenvalues shown in table 1. It is clear that for all 6, a positive real eigenvalue 2m 
and a complex conjugate -m f i s  with a negative real part exist. The homoclinic 
orbit hence represents the special case when the one-dimensional unstable manifold 

- c'h' + q* = 1 - C* 
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FIGURE 3. The solitary pulse family as a function of 6 .  All substrates are of unit thickness. 
X 

joins the two-dimensional stable manifold. This is a codimension-one bifurcation and 
the homoclinic orbit exists at a unique ‘nonlinear eigenvalue’ c*, corresponding to 
the speed, for any give 6. There is hence a single solitary pulse for a given 6 and 6 
parameterizes a family of such pulses as we learned from the KS equation. This is 
the family shown in figure 3. The speed and the pulse height h, of the solitary wave 
are also included in table 1. As is consistent with our previous argument, we find 
the ratio (c* - 3) / (hm - 1) to be constant at about 2.4 for 6 < 0.05, close to the 2.25 
predicted from the KS solitary pulse. Even at higher 6, this ratio only decreases to 
about 2.0 for the largest solitary pulse at 6 = 0.09. This is quite remarkable since, as 
shown in table 1, the pulse amplitude at 6 = 0.09 is 3.36 times the substrate thickness 
and the weakly nonlinear KS scaling is definitely incorrect in this region. Another 
curious result is that the speed C* and amplitude h, of the solitary pulse measured 
from the wall seem to approach constant asymptotes at large 6. The width w of 
this pulse and the area A within the hump, after substracting the flat substrate film, 
still vary significantly at large 6, as is evident in figure 3. The small-6 solitary pulses 
correspond to the KS limit and their amplitude-shrinking and length-stretching KS 
scaling are quite evident in figure 3. 

We note that the speeds of the solitary pulses are much larger than the linear phase 
speed and the finite-amplitude sinusoidal waves, both of which travel slower than 
three times the average velocity, the unit for wave speed in the averaged equation 
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(Demekhin & Shkadov 1985 and Chang et al. 1993a). The fact that the positive 
eigenvalue is real and the complex conjugate has a negative real part also dictates the 
shape of the solitary wave. As is evident from figure 3, while the back slope is smooth 
and monotonic in the negative-x direction, a rapid drop in the positive x-direction 
is followed by diminishing oscillations. These oscillations, sometimes known as bow 
waves, are unique to solitary pulses on thin films. For near-critical conditions, Chang 
(1986) has associated them to the neutral waves of a flat film which are dominated by 
capillarity. They are hence known sometimes as capillary ripples. We shall show that 
these ripples have a profound effect on the interaction dynamics between pulses. If we 
choose the absolute maximum of the pulse h, to lie at the origin, the two tails of the 
pulse, the monotonic back tail and the oscillatory front tail, can be approximated by 

(2.5) 1 h&c) - 1 = A cos(8x + 40)e-m as x + 00, 

hb(x) - 1 = Be2" as x + -00. 

The parameters A,B and $0 are functions only of 6 and they can be easily obtained 
from the constructed solitary pulses. These expressions for the tail greatly simplify 
the computational effort of our theory. 

The condition (2.4) implies that h and q of each solitary pulse member in the family 
have been normalized to unity at the flat-film limit of x + ,00. The parameter 6 
is actually defined by the Nusselt thickness hN of this flat-film limit. However, as is 
evident from figure 1, the flat-film substrate in the vicinity of each solitary pulse is 
slightly different and each is much smaller than the original flat film near the inlet 
flow rate. This difference in the substrate is due to the fact that the solitary pulses are 
mass-carrying and the flat-film sections do not necessarily have the same flow rate 
and, hence, the same thickness. (This fact was first realized by Nakaya 1989.) We 
shall hence model each pulse in figure 1 as a stationary solitary pulse on a particular 
substrate and moving at a particular speed. Since h(+oo) and q(fco) have been 
normalized to unity in (2.3) and (2.4), 6 then represents a parameterization of the 
substrate thickness of a pulse for a given fluid. Equivalently, each pulse in figure 1 
corresponds to a member of the family in figure 3. The dynamics we observed in 
figure 2 is then due to interaction among different pulse members of figure 3. These 
interactions are driven mostly by the occasional large pulse which results from a 
coalescence event. (Three are seen in figure 1 at x = 410, 480 and 780.) Since each 
large pulse travels much faster than its smaller neighbours, it quickly tears away from 
its back neighbour and encroaches on its front one. The dominant interaction is hence 
a binary one between a larger pulse and its smaller front neighbour. As the larger 
pulse approaches its front neighbour, it loses mass as the two pulses sit on different 
substrates and the drained liquid is used to coat the thinner substrate. If the initial 
separation between the two pulses is sufficiently large, the drainage will stop when 
the two substrates are of the same thickness and the two pulses are identical. These 
two identical pulses will still attract or repel each other and this interaction between 
two identical pulses will determine whether the next coalescence will take place. A 
critical coalescence criterion is hence the key to fully understanding the solitary pulse 
dynamics and one will be developed here. 

Our theory focuses on the binary interaction between a large pulse and its smaller 
front neighbour at a given 6. With just two pulses, the substrate thickness, unlike that 
in figure 1, remains at unity away from the pulses. The front pulse is the true solitary 
pulse for the given 6 value and is used as a reference pulse. In a coordinate system 
moving at the same speed as this reference pulse, it remains stationary. Since our 
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computations for the binary interaction will be carried out in this moving coordinate 
system, the front pulse will be called the stationary pulse. The larger pulse, on the 
other hand, is not the true solitary pulse solution at that 6. However, we shall 
assume that it is a solitary pulse for a hgher 6 and hence sits on a local segment of 
substrate whose thickness is greater than unity. This back pulse is hence known as 
the excited pulse and it has a larger substrate thickness, amplitude and speed than 
the stationary pulse. As a result, it advances and decays in the moving coordinates 
as all three quantitites decrease. During this decay stage, we assume that the excited 
pulse corresponds quasi-steadily to a member of the pulse family at each moment. 
The decay dynamics is then an evolution of the excited pulse through the family till 
the stationary member at the particular 6 is reached. This quasi-steady decay will be 
verified by numerical experiments. After resolving the decay dynamics of the excited 
pulse towards the stationary pulse, the theory then describes the interaction of two 
identical stationary pulses on the same substrate of unit thickness. Near the inlet 
when the initial separation is small, the excited pulse may not decay completely to 
one that is identical to its front neighbour before coalescence takes place. We shall 
show, however, that the excited pulse decays very rapidly and our theory is valid for 
separations no shorter than two or three pulse widths. It is hence quite accurate from 
x = 400 in figure 1 and x’ = 40 cm in figure 2. 

For a given flow condition, viz. at a given 6 value, when we numerically place the 
constructed solitary pulse on a unit substrate in the moving frame with speed c*, it 
remains stationary provided other disturbances are not imposed. It should be noted, 
however, that the flat substrate region is strictly unstable and sinusoidal disturbances 
will nucleate with any slight perturbation. However, since the latter waves travel 
much slower than the solitary pulse, they are quickly swept into the pulse as shown 
in figure 4, where uncharacteristically large sinusoidal waves have been numerically 
placed in front of a pulse. During interaction with the sinusoidal ‘phase waves’, 
the change in the solitary pulse is almost imperceptible. Its speed is only slightly 
perturbed during and after absorbing the sinusoidal waves. We can hence omit the 
effect of the substrate sinusoidal waves on the solitary wave dynamics. This has also 
been observed by Liu & Gollub (1994) whose experiments show that the solitary 
waves tend to sweep the surface clean of any small fluctuations. 

To study and demonstrate the binary interaction leading to coalescence, a larger 
solitary pulse is placed behind the original stationary one. As shown in figure 5a, when 
the separation between the pulses is smaller than a critical value, the two pulses will 
attract each other and coalesce irreversibly to form a single large pulse. If the initial 
separation is large, there will be some transient interaction but the two pulses will 
eventually repel each other and yield two independent pulses, as shown in figure 5b 
. These two pulses will be separated by a constant separation and are known as a 
‘bounded pair’ as shown in figure 6a. After some careful numerical experiments, it is 
possible to obtain the critical initial separation delineating coalescence and repulsion 
for a given pair of excited and stationary pulses, and one sees that the two pulses form 
a far closer ‘bounded pair’ than the repulsion case which resembles the two-hump 
solitary pulse shown in figure 6. This particular bounded pair hence represents the 
transition state for coalescence. Identical stationary pulses coalesce if their separation 
is smaller than the critical distance I‘ represented by the separation between the two 
humps of the transition-state bounded pair. 

It is important to note that this critical distance I’ for the coalescence of two 
identical pulses on the same substrate is different from the critical initial separation 
observed in figure 5 between a given pair of excited pulses and its stationary front 
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FIGURE 4. Interaction between a solitary pulse and sinusoidal phase waves. The frames are taken 
at equal intervals in a fixed laboratory frame. Note that the speed and shape of the pulse remains 
unaffected by the interaction. 

neighbour. The latter critical separation is a function of the initial difference in the 
amplitudes of the two pulses and it approaches I' as the difference approaches zero. 
The objective of our theory is to estimate how the critical distance depends on the 
amplitude difference. Using the front stationary pulse as the reference pulse, this 
difference can then be termed the 'degree of excitation' of the back pulse which can 
be measured by h,2 or 2, the difference in amplitude, speed or substrate thickness, 
respectively. Each measure is equivalent since the excited back pulse is a member of 
the one-parameter solitary pulse family at every instant in its decay. The dependence 
of the critical separation on the degree of excitation of the back pulse explains why 
some near encounters far from the inlet in the world lines of figure 2 do not lead 
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FIGURE 5. Two interaction experiments showing (a) coalescence and ( b )  repulsion for 6 = 0.05 in a 
frame moving with the speed of the front stationary pulse c'(6). In both cases, the initial amplitudes 
are the same with the back pulse excited but the inital separations are different. 

to coalescence even though the two pulses come as close as those that do coalesce 
further upstream. Each prior coalescence gives rise to a pulse of roughly equal degree 
of excitation but a coalesced pulse far downstream is simply further from its front 
neighbour. The next coalescence may not occur even if the two pulses approach each 
other since the back pulse has drained most of its fluid, viz. the initial separation 
exceeds the critical value. A more detailed depiction of the coalescence event from 
our numerical experiments is shown in figure 7. It is seen that, at the initial large 
separation, the excited pulse 1 at the back is oblivious to the stationary pulse 2 in 
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FIGURE 6. ( a )  The repulsion case of figure 5(b) resulting finally in a bounded pair with large 
separation and (b) the critical initial separation that results in a two-hump pulse. 

front and its amplitude decays in a unique linear fashion, which will be scrutinized 
in a latter section, as it catches up with the stationary pulse. The stationary pulse 
2 is also unaffected by the decay dynamics of the excited pulse during the transient 
period. When two pulses are sufficiently close, however, the short-range attractive 
interaction takes over and causes the two pulses to coalesce to form pulse 3. 

The decay dynamics of the excited pulse at the back in figure 7 is extremely 
important. At any given instant, it resembles a solitary pulse of a larger 6 in figure 3. 
The approach towards the stationary pulse of the actual 6 in the experiment roughly 
corresponds to a quasi-steady evolution along the family of solitary pulses in figure 3 
towards the one corresponding to the actual 6 value. This is further corroborated 
in figure 8 where the decay dynamics is compared to the solitary pulse branch 
represented by c'(6) and h,(6). (Note the similarity in the shapes of the two curves 
c'(6) and h,(6). This is another manifestation of the fact that (c* - 3) / (hm - 1) is 
approximately constant.) Ideally, the instantaneous 6 should be determined from the 
measured instantaneous film thickness behind the pulse. However, we have found 
it easier to determine 6 by measuring the area A under the pulse, which is a larger 
number than the thickness, and using table 1 to find the corresponding 6. It suffices 
to view 6 as a measure of the decay time and C* and h, seem to track the C* and 



Interaction dynamics of solitary waves on a falling film 135 

1.6 

1.4 

h 
1.2 

1.0 

0 20 40 60 80 100 
X 

RGURE 7. A different depicition of the interaction in figure 5(a) that leads to coalescence. Note 
the linear decay of the excited back pulse. Pulse 1 is the initial excited pulse and pulse 2 the initial 
stationary pulse. pulse 3 is the coalesced pulse. 
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FIGURE 8. Decay of the excited pulse in figure 7 along the solitary pulse family of figure 3. The 
instantaneous 6 values are computed from transformation (3.4) by measuring the area A under the 
pulse and using table 1. 
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FIGURE 9. Schematic of an excited pulse with a back substrate thickness x that is larger than the 
unit thickness in front. 

h, of the solitary pulse family in figure 3 very closely. The excited solitary pulse is 
observed to perch on a back substrate layer of thickness x that is thicker than the 
unit value corresponding to the actual 6. (See the coalesced pulse 3 of figure 7 where 
the back substrate is at its thickest value.) An exaggerated caricature of this excited 
pulse is depicted in figure 9. As the excited pulse decays, the raised substrate thins 
towards unity while liquid drains out of the pulse as it approaches the true stationary 
one. A small shock is created behind due to this drainage and it propagates backward 
relative to the pulse. This small shock is also evident in figures 5, 6 and 7. Such 
a shock actually corresponds to an interaction of the solitary pulse with radiation 
modes spanned by its continuous spectrum. However, in this preliminary study, we 
shall approximate the drainage mechanism with a different formulation involving the 
point spectra. 

A qualitative understanding of the evolution dynamics shown in figures 1 and 
2 has now emerged. After each coalescence, an excited pulse which resembles a 
stationary pulse at a higher 6 is created and travels faster than its smaller front 
neighbour. It will hence shorten the separation from its stationary front neighbour. 
However, given sufficient separation from its front neighbour, the excited pulse will 
decay quasi-steadily in amplitude and speed towards a true stationary pulse and the 
separation will eventually reach an asymptotic value when the two pulses travel at the 
same speed. If this asymptotic value is smaller than a critical separation, short-range 
attractive forces will cause the two pulses to coalesce. Otherwise, two independent 
stationary pulses will result. Since the initial separation between an excited pulse and 
its front neighbour will increase downstream on average as more and more pulses 
are annihilated by coalescence while the ‘degree of excitation’ due to the coalescence 
of two nearly stationary pulses remains the same, an equilibrium separation will 
eventually be reached such that additional coalescence is not possible. It is then clear 
that the most important key to the understanding of the pulse dynamics is the binary 
interaction between an excited pulse and a stationary pulse in front. We shall develop 
an analytical theory that describes the long-range decay of the excited pulse and the 
relatively short-range interaction of the two pulses. In particular, an estimate of the 
critical separation 1’ will be constructed. This binary theory promises to elucidate the 
more complex dynamics in figures 1 and 2. 

3. Spectrum of the solitary pulse 
It was realized a few years ago (Kawahara & Toh 1988; Elphick et al. 1991; Chang 

et al. 1993b; Balmforth, Ierley & Spiegel 1994) that binary pulse interaction can 
be described by a coherent structure theory that describes the interaction between 
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two localized pulses due to the overlap between their tails. However, implicit in 
this theory is the assumption that the pulses must remain coherent, viz. stable to 
disturbances that decay to zero away from the pulses. If this stability is violated, the 
pulses will break up (split) and it is not meaningful to study their interaction. All the 
aforementioned attempts focused on the application of coherent structure theory to 
the solitary wave of the Kuramoto-Sivashinsky (KS) equation and its generalization. 
However, integration of the KS equation (Frisch, Zhen & Thual 1986; Kawahara & 
Toh 1988; Jayaprakash, Hayot & Pandit 1993, among many others) yields cellular 
structures but they do not resemble the solitary waves of the KS equation constructed 
by Chang et al. (1993b). This suggests that the solitary waves in figure 3 are not 
stable to localized disturbances at low 6, when the averaged equations reduce to the 
KS equation. 

The eigenvalue problem that determines the stability of a solitary pulse to localized 
disturbances is 

Lllr = w, 
$ bounded as x + +a, 

where the components of the vector function $ denote the deviation flow rate ij and 
the deviation height A, 

$ = ( k h  

where (r, 4') denote the solitary pulse. 
We note that part of the spectrum of L can be continuous. This continuous 

spectrum is unstable as its eigenfunctions approach the oscillatory primary waves of 
the flat-film substrate at the infinities. The unstable primary instability of the flat 
film of the averaged equations has been computed by Shkadov (1967). Although this 
continuous part of the spectrum is unstable, our numerical experiment in figure 4 
indicates that the sinusoidal waves on the flat substrate that are triggered are quickly 
swept up by a solitary pulse which, in turn, is almost unaffected by these sinusoidal 
waves. We hence omit the continuous spectrum and focus instead on the point spectra 
of the solitary pulse defined by (3.1). Ideally, the drainage process in figure 7 should 
be studied with the continuous spectrum but this will await a later, more detailed, 
analysis. An eigenmode *2 of this point spectrum of the solitary pulse dominates 
the drainage dynamics. Unlike other point eigenvalues, however, this eigenfunction is 
bounded but does not decay to zero at the infinities. It requires an ad hoc formulation, 
which is not rigorously correct, to permit an analysis of the decay dynamics from the 
step change in the substrate thickness shown in figure 9. The associated change in the 
average thickness seems to be only possible for interfacial dynamics which contains 
both the flow and kinematic dynamics, as in the averaged equations. 
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The spectrum dehed  by (3.1) contains two zero eigenvalues due to the symmetries 
of the solitary pulse. Perturbations to the solitary pulse that break these symmetries 
will shift these two eigenvalues but their real parts remain small. These perturbations 
are system perturbations and not the transient distubances in the classical linear 
stability theory. They correspond to the effect of a perturbation operator L' on a 
simple zero eigenvalue of L, viz. we would like to resolve the near-neutral spectrum of 
L + L' given that L has some zero eigenvalues. In our case, the perturbation operator 
is in the form of another solitary pulse or a change in the substrate thickness in front 
of the pulse (a hydraulic jump). Provided that the other point eigenvalues are stable 
and bounded away from the imaginary axis in the complex plane, these two modes 
will dominate the dynamics of a pulse even after they are shifted by the imposed 
perturbations. 

The first pertinent symmetry is the translational symmetry - if (q*,h')(x)  is a 
solution, so should (q*,h')(x - XO) be for any arbitrary shift XO. Hence, for a 
known pulse solution, a one-parameter family of pulses parameterized by xo can be 
generated simply by shifting. Put another way, if one perturbs a stationary solitary 
pulse by translating it slightly, the degeneracy that arises from the continuous family 
of solutions implies that this motion is in the direction of an eigenfunction with a 
zero eigenvalue. More precisely, for xo small 

(;: ) (x - xo) (;: ) (x) - xo (2) (x) 

and 

$1 = (g) (X) 

(3.2) 

(3.3) 

is a null eigenfunction of L. Since q' and h' approach unity at the infinities, the 
vanishing-derivative boundary conditions are obviously satisfied. One component hi 
of $1 is shown in figure 10 for a particular pulse. 

The second symmetry that generates 'zero dynamics' is more subtle. It corresponds 
to the degeneracy related to the family of solitary pulses in figure 3. As mentioned 
earlier, each member of the family is normalized such that h'(+co) and q*(+co) are 
unity. The substrate thickness and its corresponding flow rate are then represented by 
6. In turn, one can fix 6 and allow h'(fco) and q'(foo) to vary. The asymptotic film 
height and flow rate cannot vary independently due to mass conservation in (2.3) and 
(2.4) and it is convenient to denote h'(fco) as x. The value of 6 can be arbitrarily 
fixed but is usually given the flat-film value at the inlet, viz. based on the inlet flow 
rate. Physically, however, the 6-parameterized family and the 1-parameterized family 
are identical and there must be a transformation that maps one family to the other. 
For a given flow condition, one simply cannot vary 1 and 6 independently. This also 
implies that in our numerical experiment in figure 1 which integrates (2.1) at a fixed 6 
value, there is actually a one-parameter family of solitary pulses parameterized by the 
substrate thickness x and the spectrum of each solitary pulse member of the family 
must contain a zero eigenvalue due to this degeneracy that arises because the local 
substrate thickness and flow rate are not specified in the defining equations (2.3) for 
the solitary pulse. The transformation that transforms the &parameterized family 
of figure 3 to a x-parameterized family at fixed 6 can be determined from a simple 
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FIGURE 10. The two components of the adjoint eigenfunction 9 1  and the 8 components of 91 and 
$2 at 6 = 0.07. 

application of the n-theorem, 

(3.4) 

h'(x; 6, x )  = xh'(xx-'/3; 6x11'3, l), 

q * ( x ;  6, x )  = x3q*(xx-'/3 ; 6x1'/3, l), 

c'(6,x) = x2c0(6x"/3, l), 

and the defining equations (2.3) for the solitary pulse with h'(foo) = x are invariant 
under this transformation. Note that the solitary speed C* must also be transformed 
and the spatial coordinate x stretched. This transformation allows us to transform the 
&parameterized family of figure 3 where x = 1 to a family parameterized by x for any 
given 6. Since the simulation in figure 1 is carried out for a fixed 6, each stationary 
solitary pulse observed there is then a member of the latter family. There is, of course, 
an infinite number of such solitary pulses possible with different substrate thicknesses. 
The variation in the substrate thickness from one pulse to another is quite apparent 
in figure 1. We note that in the binary interaction experiment of figures 5, 6 and 7, 
the final substrate thickness, regardless of whether coalescence takes place, is unity 
since there are only one or two solitary pulses on the film. This is, of course, not true 
in figure 1 where numerous pulses exist. 

For a given 6, the translational invariance that generates a one-parameter family 
yields a zero eigenvalue. The invariance to transformation (3.4) also yields a one- 
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parameter family and hence a zero eigenvalue of 2’ related to this symmetry is 
expected. The corresponding eigenfunctions are 

one component of which is shown in figure 10. It measures the changes in q and h as 
one moves through the pulse family of figure 3. Since the decay of an excited pulse 
corresponds to such a quasi-steady motion through the family, this mode determines 
the decay rate. In fact, hi specifies how much fluid drains out of the excited pulse of 
figure 9 as it decays. In the present theory, we shall set x to unity in the derivative 
in (3.5). By taking the derivative of (2.3) with respect to c* and by using (2.4) one 
immediately sees that 

where subscript c denotes derivative with respect to c*. It is more convenient to use 
$2 and since 

it immediately follows that $2 is a generalized null eigenfunction such that for a given 
x (or 61, 

w 2  = a$1, (3.6) 
where the parameter a is 

and it corresponds to a derivative along the solitary pulse family. Note also that $2 

has vanishing derivatives at the infinities but decays to the unit constant itself. This 
is because there is a change in substrate thickness as one goes from one member of 
the family to another within the solitary pulse family parameterized by x. 

A detailed discussion of why the $2 mode of the KS equation should be a 
generalized eigenfunction has been offered Elphick et al. (1991). We explore a more 
physical explanation here. The zero mode $1 corresponds to a position mode related 
to the translational symmetry. Whenever the translational symmetry is broken by 
a perturbation, this mode is excited and the pulse is shifted. However, there is 
no correction to the speed of the pulse - it is not accelerated. The generalized 
zero mode $2, on the other hand, corresponds to a speed mode since each member 
of the family in figure 3 has a different speed, c is a function of 6 or x. Since 
the dynamics of a position mode cannot be independent of the speed mode, these 
two zero modes cannot be independent and one must hence be a generalized zero 
mode. 

The fact that $2 approaches unity at the infinities presents a special problem. This 
implies that the disturbance that we would like to expand with $1 and $2 can also 
approach constant values at the infinities. Such non-integrable disturbances are not 
physical and do not correspond to any definable functional space. Equivalently, 
we cannot find a generalized adjoint eigenfunction to allow projection onto the 
generalized zero mode. A more proper analysis involves the continuous spectrum 
but we shall overcome this problem here by simply neglecting the tail ends of $2 

away from the pulse. This corresponds to localized disturbances and the implicit 
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assumption that the decay dynamics of figure 7 involves mass drainage from the 
pulse only and not the substrate thickness. The change in the pulse area is still well 
approximated by $2 within the pulse width. 

There are no other zero modes in the spectrum of the solitary pulse and we expect 
$1 and $2 to dominate the dynamic reaction of the pulse to perturbations. This is 
consistent with our observations from the numerical experiments. The slow decay 
dynamics of an excited wave corresponds to an excitation of the $2 speed mode 
due to a change in the front substrate thickness as shown in figure 7. Although the 
translational invariance is also broken, the relative short range of the $1 interaction 
implies that the position mode is not excited directly, as we shall demonstrate. The 
excited $2 mode causes a transformation from a solitary pulse on substrate thickness 
x to one on a unit substrate thickness in figure 7. In figure 1, this decay dynamics 
would connect solitary pulses on a thicker substrate x2 at the back to a thinner one x1 

in the front. It is always a decay dynamics since the back substrate is always thicker 
than the front one after a coalescence event. The excited speed $2 mode also shifts 
the position mode through the dependence between $1 and $2. This moves the back 
pulse closer to the front one until interaction between the two pulses through the 
position $1 mode dominates over the $2 decay dynamics - pulse-pulse interaction 
occurs on the same substrate thickness, unity in figures 5 to 7. This final interaction 
determines whether the two pulses will coalesce. 

Although there are no other zero modes, the spectrum of L still contains non-zero 
point eigenvalues that are unrelated to any symmetry. These eigenvalues must all be 
stable and, in fact, bounded from the imaginary axis such that the perturbed zero 
modes are always dominant. Otherwise, the solitary pulses will lose their coherence 
and break up. Unlike the two zero modes, which cause a pulse to shift or accelerate 
without signifcantly changing its shape, the others are strongly shape altering and 
if they are excitable, it is not meaningful to apply our approach which presumes 
dynamics with small departures from the solitary pulse dominated by the two zero 
modes. We have carried out a detailed numerial analysis of the spectrum of L using 
a shooting method. The leading non-zero point eigenvalues of the solitary pulse are 
shown in figure 11. It is clear that for 6 < 0.03, this point eigenvalue is stable but of 
the same magnitude as the perturbed zero eigenvalues. It would hence dominate the 
pulse dynamics as much as the other two. While it is possible to include this mode 
so that there are three dominant modes, we shall develop a simpler theory here with 
just the two dominant modes generated by the system symmetries. We hence require 
6 to be larger than 0.03 which encompasses most realistic conditions but excludes the 
use of low4 evolution equations. 

To project the pulse dynamics on to the two zero modes, we require the null adjoint 
eigenfunctions. The definition of the adjoint operator is detailed in Appendix A. We 
shall simply denote it as Lt here and, as Elphick et al. (1991) have discovered for the 
KS equation, we find two null adjoint eigenfunctions (see Appendix A) 

t , L (P2 =o, L(P1=0 t (3.7) 

where the two components of (PI are shown in figure 10 while 9 2  = (0,d)' where d is 
a constant. It is clear that, using the inner product of Appendix A over the infinite 
domain, ($2, (p2) = Jrm $2 q2dx is unbounded and hence unacceptable. This again 
relates to the fact that $2, as shown in figure 10, is not square-integrable. However, 
if we define the inner product (., .) involving $2 to be only over the pulse width, we 
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can always select a d such that 

where inner product involving +1 is still over the infinite domain. We note that the 
biorthogonality condition in (3.8) does not include (+2,cp1) = 0. Even by restricting 
the domain of integration over the pulse width, this integral involving $2 does not 
vanish. It is, however, a small number which we shall neglect. This anomaly arises 
because the operator L of (3.1) has a generalized zero mode while its 'adjoint' (3.7) 
does not. This peculiarity, in turn, originates from the non-square-integrable nature 
of $2, the substrate/speed mode which controls fluid drainage from the pulse. A 
negligible ($2, cpl) corresponds to a decoupling between the drainage dynamics at 
large separation and the pulse-pulse interaction dynamics, which is controlled by 
$1, at short separation. This is also consistent with the shrinking of the domain of 
integration in inner products involving $2 - the drainage is unaffected by other pulses 
as is evident in the numerical simulation of figure 7. 

We note that the second height component of the null adjoint eigenfunction cp1 

approaches constant values of opposite sign in opposite directions as seen in figure 10. 
This is consistent with the null adjoint eigenfunction constructed by Elphick et al. 
(1991) for the KS equation. The constant d for cp2 such that ( $ 2 , 9 2 )  = 1 can be easily 
estimated from symmetry (3.4). Let x E (a ,b)  be the pulse domain where the inner 
product is evaluated. This normalization then becomes 

The integral Jab hdx is simply the area under the pulse. However, from (3.4), 

= x413 Jdbl h(5;6x1'j3, l )dt  = x ~ / ~ A ( ~ x " / ~ )  

where 4: = xx-l13 and @',a') = (b,a)x-'13. We have neglected the area within the 
film beneath the pulse which is negligible compared to the pulse area. The quantity 
46~"'~) is simply the area A in table 1 for the pulse family with x = 1. Hence, 
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d l b h d x =  $A(6)+"6-  dA 
ax d6 

where A(6)  and dA/dG can be obtained from table 1. The constant d is then 

We can now expand any solution to the averaged equations about the solitary pulse 
of an arbitrary x (or 6) in the frame moving at the same speed as the reference pulse, 

where 2 denotes deviation from the substrate thickness of the reference pulse and the 
amplitudes of the two zero modes have been represented by physically meaningful 
variables. The amplitude of the speed mode 2(t) can also be transformed to 2( t )  from 
(3.4) where both 2 and i. denote deviations from x and C* of the reference pulse. If 
we transform the averaged equation to a coordinate moving with the speed C* of the 
reference solitary pulse in (3.9), substitute (3.9) into the resulting equation, linearize 
and take inner product with the null adjoint eigenfunctions, we obtain 

(3.10) 

in the absence of any perturbation. The dependence between the position and speed 
modes has yielded the double-zero Jacobian of the projected linear dynamics. Without 
any perturbation, the solitary pulse remains stationary and xo and 2 are zero exactly. 
The pertinent dynamics observed in the previous section is then triggered when 
perturbations are imposed. 

4. Inelastic coherent structure theory 
We focus first on the decay dynamics corresponding to *z. For a given 6, the 

solitary pulse on a unit substrate is taken to be the reference solitary pulse. The 
change in substrate thickness ( x  - 1) behind the excited pulse, shown in figure 9 
and seen as a backward propagating shock in figures 5 and 7, then represents a 
small and negligible step change in the substrate film but a significant mass sink. 
As the shock propagates backwards relative to the excited pulse, it coats the thinner 
substrate. The liquid mass required for this coating comes from the excited pulse. The 
coating rate is not constant since the capillary, inertial and viscous forces conspire 
in a quasi-steady manner such that the substrate thickness immediately behind the 
excited pulse decreases steadily. This explains why the back shock seen in figure 7 
increases in amplitude away from the pulse: it is a reflection of the ever-decreasing 
substrate thickness as liquid mass is drained from the pulse. The rate of this mass loss 
can be easily determined. From the averaged equations (l), it is clear that the flow 
rate in the laboratory frame for a flat film of thickness x is q = x3.  In a frame moving 
with the reference solitary speed, the flow rate becomes q = x3 - cox. Consequently, 
the change in flow rate when a substrate exhibits a hydraulic jump from thickness x 
to thickness unity is Aq = x 3  - c'x - (1 - c*) - (3 - c*)2 where 2 = x - 1 4 1  is the 
'degree of excitation' of the back pulse measured by the deviation substrate thickness. 
Since c* is larger than 3, a net drainage from the pulse occurs. This sink can be 
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written as (3 - c)jjS(x') where x' is the location of the jump in figure 9 and d(x) is a 
Dirac delta function. The exact location of X* is not important as long as it is not 
within the pulse. This perturbation to a single solitary pulse can then be described 
by the following perturbed and linearized version of the averaged equation in the 
moving frame, 

All other terms that arise due to the hydraulic jump are negligible compared to this 
point sink. Expanding (4, A)  by @I and @z as in (3.9), substituting into (4.1) and taking 
inner product ( a ,  .) with cp1 and cp2, one obtains the perturbed version of (3.10), 

0 0  
dt ("> 2 = (: :) (7) - (0 Y )  (7) (4.2) 

where y = cp:(x')(c' - 3) = d(c' - 3) where d is the second f i  component of (p2 and 

3(c' - 3) 
= 4A + 116(dA/d6)' (4.3) 

The values of the decay factor y are tabulated in table 1. It also approaches a constant 
value for 6 larger than 0.05. 

In deriving (4.2), we have neglected the nonlinear terms in favour of the linear 
substrate perturbation term due to the hydraulic jump. In essence, we are ignoring 
the nonlinear interaction between the solitary pulse and the hydraulic jump. This is 
obviously valid when the jump is small such that y2 is larger than 0((2(2) and O(xo(2l) 
terms. This is generally true for the degrees of excitation involved but the omitted 
nonlinear terms are responsible for the larger errors and fluctuations seen in figure 8 
when the degree of excitation is relatively large. We have also neglected the small 
jump in front of the excited pulse. It is more precise to model the decay of the excited 
pulse as the interaction of two shocks, with the front one corresponding to a shock 
travelling wave (a heteroclinic orbit) like the one constructed by Pumir et al. (1983). 
Such an endeavour requires far more effort, however, and we have approximated the 
front shock by a solitary wave (a homoclinic orbit). This is consistent with the small-2 
approximation. 

One of the zero eigenvalues of the solitary pulse has hence been shifted by the 
presence OC the jump in the substrate thickness which breaks the corresponding 
symmetry. This jump then drains fluid from the pulse which causes the pulse to 
evolve quasi-steadily into another solitary pulse with a thinner substrate. This is 
the observed slow decay dynamics of the excited pulse. The translation symmetry is 
also broken but the shift in the position zero mode is negligible for a small jump. 
Nevertheless, the slow decay induced by the shifted speed zero mode will trigger a 
shift in the position due to their linear dependence. The magnitude of y is small as 
seen from table 1. The drainage ceases when the jump vanishes at 2 = 0 but the 
drainage rate is related to how the area under the pulse changes as it moves through 
the family in figure 3. This change in area is captured by cpi. The above slow decay 
requires that 6 be in excess of 0.04 such that the omitted mode in figure 11 is larger 
in magnitude than y. To justify the omitted nonlinear terms, we should also require 
the excitation 2 to be smaller than y, which is easily satisfied for 6 in excess of 0.04. 

If these stipulations hold, (4.2) indicates that the slow decaying dynamics is linear 
such that the thinning of the raised substrate x in figure 9 is governed by 2 - exp(-yt) 
where j j  = x - 1. Since C* and h, can be expressed as a funciton of x only during the 
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quasi-steady decay, we have 

dc' 
2 = c'(x) - c'(1) - -(l)? = a?, 

dx 
A 

h = hm(x) - hm( 1) N - dh"(l)2 
dX 

and 
A dc' 
c = -(l)A. 

dhm 
As mentioned in the previous section, we find from the constructed solitary pulse 
family that c* - 3 - 2.4(hm - 1) and hence the derivative dc'/dh, is approximately 
2.4. To demonstrate this relationship more explicitly and to further verify that the 
decay dynamics evolves through the family of solitary pulses parameterized by 6, we 
show in figure 12 the evolution in amplitude and speed of the excited back pulse 
and the new pulse created by coalescence. The speeds and amplitudes of both decay 
exponentially in time but when cross-plotted, they lie on the same straight line close 
to the estimated correlation. 

We note here that, since the derivatives of C* and h, with respect to 6 or x are 
non-zero, the second equation in (4.2) also implies that the speed, substrate thickness 
and amplitude all decay exponentially in time by the same rate: 

i.,?, h - exp(-yt). 

In figure 13, this unique decay dynamics is again verified by extracting the dynamics 
of the excited pulse in figure 7 for 6 = 0.05. The decay exponent of y = 0.047 provides 
a very accurate description of the decay of both 2 and A. 

decays 
linearly in space. Integrating the position xo equation in (4.2) that is coupled to the 2 
speed mode, one obtains 

Another prediction of this theory for the decay of an excited pulse is that 

(4.4) 

which is also in agreement with the experimentally measured position of the excited 
pulse as it decays, as seen in figure 13. Since y is small, the excited pulse is 
shifted significantly by an amount x, from its original position in the moving frame. 
Combining the above equations, one obtains the linear amplitude decay in space: 

A - &o) - Y X ~ $ / ~ ( O )  = A(o)(I - xo/xm)- (4.5) 

In figure 7, the initial excitation, as measured by 2(0), is approximately 3.0 which 
yields a predicted shift of x, = 60. This is in agreement with the measured X, in 
figure 13. This predicted x, also suggests that the excited amplitude decays linearly in 
space at 6 = 0.05 by a slope of 0.017 which is in good agreement with the simulations 
shown in figures 7 and 13, even when the excited pulse has come very close to the 
stationary pulse in front of it. The measured linear decay in figure 7 has a slope 
of approximately 0.02. This estimated value of x, is about three times the pulse 
width w at 6 = 0.05. This implies that any excited pulse which is roughly twice the 
amplitude of the stationary pulse in front will have sufficient space to decay towards 
a stationary one if the initial separation is more than three times the pulse width. 
This is true for all 6 values and hence, as long as the initial separation is more than 
three times the pulse width, the final interaction is between two identical pulses on 
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FIGURE 12. Decay dynamics of the excited back pulse and the new pulse generated by coalescence 
in real and dimensionless units at 6 = 0.09. The labels A, B and C correspond to the indicated 
pulse of the ‘snapshots’ shown. Coalescence occurs between B and C. The amplitude h, and speed c 
are cross-plotted in (b) with the dotted line representing the short interval during coalescence. Both 
excited pulses decay by the same decay rate in time and when cross-plotted, lie on the same 2. - b 
straight line which is very close to the i. = 2.4b dashed line. This verifies the quasi-steady decay 
through the pulse family. Note also the close encounter with two-hump transition state at 9/15 s 
which is represented by * in (b). The length and time scales for transformation to scaled variables 
are listed in figure 2. 



10.0 A 
9.5 
9.0 
8.5 
8.0 
7.5 
7.0 

Interaction dynamics of solitary waves on a fallingfilm 

1 .o 
0.8 

0.6 

0.4 

0.2 

147 

t t 

0 10 20 30 40 50 60 
t 

50 

40 

30 

20 

10 

0 

X 

t 
F~GURE 13. Decay dynamics of the excited pulse in figures 5 and 7 are shown as curves labelled 2. 

The theoretical curves 1 from the linear decay theory correspond to a decay rate of y = 0.047. 

the same substrate. Conversely, if the initial separation is less than two or three pulse 
widths and the back pulse is excited by the same amount, coalescence will occur but 
it will not be described by the present theory. In particular, the repulsion between 
two identical solitary pulses will most likely be masked by the dominant decaying 
dynamics of the back pulse during coalescence if the separation is not sufficiently far. 

Having captured the decay dynamics, we proceed to study the nonlinear interaction 
between two pulses which does not shift the position zero mode but adds nonlinear 
terms to (4.2). We assume that the excited pulse has decayed sufficiently when 
the interaction between the two pulses becomes significant such that the interaction 
corresponds to two pulses on the same unit substrate. This is tantamount to assuming 
that the initial separation Z(0) is at least of the order of the characteristic decay length 
of an excited pulse, 

I(0) - xm. (4.6) 
If this is satisfied, the classical coherent structure theory for the interaction of two 
pulses on the same substrate can be derived. In this case only is excited and 
we consider a specific perturbation to a reference solitary pulse in terms of another 
identical solitary pulse a distance I in front. To investigate the influence of the front 
pulse on the back one, we expand 

where #1(x) is the position mode of the back pulse located at x = 0. Substituting 
(4.7) into the averaged equation in the frame moving with speed C* of the two pulses, 
expanding to quadratic order in the mixed term between the two pulses and taking 
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the inner product with respect to cpl(x) of the back pulse, we obtain 
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where D denotes the quadratic interaction terms between the two pulses in (4.7). 
Since the only nonlinearities of the averaged equation in the moving frame appear 
in the 4 component and not the f i  kinematic component, we need only be concerned 
with the 4 component of cp1. Since the two pulses are well separated, interaction 
is through the tails of the two pulses and is weak. Both solitary pulses also satisfy 
the full steady nonlinear equation in the moving frame individually. Hence, the only 
interaction terms come from d/dx(q2/h), hh, and q /h2  in the averaged equation. 
Expanding to mixed terms for q = q*(x) + q*(x - I) and h = h'(x) + h'(x - I) and 
using (4) to eliminate q*(x) and q'(x + I), we obtain 

where the scalar interaction term is a complex function of f i  = h' - 1: 

12 d 
5 dx 

f(x) = -(c* - 1)2-[&(x)&(x - l ) ]  

1 -- p(x)-h(x - I) + &(x - 1)-h(x) + 2(2c' + 3)i(x)&(x - 1) . (4.9) 
1 d3 .. d3 *. 

56 dx3 dx3 

The tails described in (2.5) can be used with good accuracy to represent h'(x) and 
h*(x-l) in the interaction term f. In evaluating the inner product (4.8), it is important 
to line up the origins of qp1 and h'(x) defined to be at the maximum of the reference 
pulse h'(x). Since h'(x - 1) appears linearly in d and D and since the back tail of this 
front pulse behaves as e-2m', it is clear that the interaction force must be of the form 

gf(I) = -Re-2m' (4.10) 

where R is only a function of the reference pulse and hence a function of 6, and 2m is 
the decay rate of the back tail of the front pulse. The explicit and only dependence on 
the separation I, however, is contained in the exponent. Both rn and R are tabulated 
in table 1. Since R is positive, (4.10) indicates that the back pulse is repelled by the 
front one and its position is pushed to the left. Since h' is a homoclinic orbit in the 
phase space of (h*, h:, hlx), gf(l) is essentially the Melnikov function in homoclinic 
theory which measures how the front pulse perturbs the trajectory of the homoclinic 
orbit (see Balmforth et al. 1994, for a more detailed discussion). 

The back pulse also applies a force on the front pulse and unlike gf(1) this force can 
be either attractive or repulsive. Let I be negative in (4.7) and let xl(t)*l(x) denote 
the position mode of the front pulse now situated at x = 0. One obtains 

(4.11) 

where hf(x) of (2.5) with the decaying oscillation is now used for h(x - I) = h(x + 111) 
in (4.9). The result is that the back Melnikov function is 

&(I) = Se-"'cos(BI + e) (4.12) 

where S and 0 are listed in table 1. We note that, owing to the oscillatory front tail 
of the back pulse, viz. the capillary ripples or bow waves, the interaction can push 
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the front pulse both forward and backward, depending on the value of 1. This is 
consistent with earlier theories on pulse interaction (Kawahara & Toh 1988; Elphick 
et al. 1991; Chang et al. 1993; Balmforth et al. 1994). 

The physical mechanism behind the attractive and repulsive forces lies in the 
capillary force within the ripples, which is also responsible for the unique shape of the 
solitary pulse. As the pulse develops and steepens owing to the pull of the gravity, a 
stationary pulse can only result if liquid is drained out of the pulse crest to relieve the 
steepening. This is provided by the first ‘dimple’ in front of the pulse which generates 
a sufficient negative capillary pressure to suck liquid out of the crest (see Wilson 
& Jones 1983 for a lubrication analysis of this capillary drainage mechanism). The 
smaller capillary waves in front of the first dimple also possess these capillary forces 
although their strength decays further away from the pulse as the amplitude (and 
curvature) diminishes. As two pulses approach each other, the back slope of the front 
pulse experiences a positive (negative) differential pressure in the liquid as it overlaps 
with a maximum (minimum) of one of the capillary waves. This elevates (depresses) 
the back slope of the front pulse and decreases (increases) its curvature. The generated 
differential capillary pressure then drains (sucks) liquid into (out of) the back half of 
the front pulse. This, in turn, causes the front pulse to move backwards (forwards) 
in a quasi-steady manner. This is why, depending on the separation between the two 
pulses, the front pulse can be attracted to or repelled by its neighbour. 

Since I = xl - xo, we can combine (4.8) and (4.11) to yield a dynamical equation 
for the separation between two pulses. If we now combine this with the linear decay 
dynamics of the back excited pulse, a self-contained dynamical system that describes 
the binary interaction between an excited back pulse and a stationary front pulse 
results: 

- d l  ( ) = (: 1;) (:> + (y) 
dt 2 (4.13) 

where g(1) = g b ( l )  - gf(l). This is the simple dynamical system we seek that elucidates 
binary interaction. 

The attractive binary force generated by the oscillatory tail immediately suggests 
the possibility of bounded pairs and periodic pulse trains. The former corresponds to 
two identical pulses 2 = 0 travelling in synchrony such that the separation remains 
constant, as seen in figure 6, while the latter corresponds to a train of equally spaced 
pulses. Kawahara & Toh (1988) and Elphick et al. (1991) have shown the existence 
of the former while Chang et al. (1993~) constructed the latter for falling films. 
Pulses travelling with identical speeds but random spacing have also been shown to 
be possible (Balmforth et al. 1994). Most of these earlier theories focused on the 
KS equation and its generalization which are not suitable for the coherent structure 
theory as we have shown. More importantly, the additional speed mode $2 with 
amplitude 2 or 2 in (4.13) changes the dynamics significantly. 

Coalescence is the key difference and the bounded pairs play an important role 
in this event. Compare for example the decay length x,(- 50) of an excited pulse 
after coalescence to the characteristic binary interaction length rn-l - 5. Without 
coalescence the pulses are never close enough to interact, and with coalescence 
only binary interaction and bounded pairs are important. The bounded pairs have 
separations li defined by g ( l i )  = 0. As shown in the sketch of figure 14, a countable 
infinite number of possible li exists due to the particular form of the Melnikov 
functions gf and g b .  This actually corresponds to a Shilnikov bifurcation from a 
single-loop homoclinic orbit to a double-loop one (Glendinning & Sparrow 1984). 
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FIGURE 14. Schematic of the Melnikov functions for binary interaction. There is an infinite number 
of possible bounded pairs represented by the intersections. The one with the shortest separation I' 
is unstable (open circles). The constructed two-hump solitary pulse corresponding to this transition 
state is shown in the inset. 

We have numerically constructed the actual two-hump solitary waves, corresponding 
to the double-loop homoclinic orbit, for the averaged equations with separation 12 

and speed c;. (See Chang et al. 1993b, for a clarification of how the two-hump 
solitary pulse family bifurcates from the one-hump family.) These two-hump solitary 
waves hence correspond to the shortest unstable bounded pairs estimate from the 
coherent structure theory here. They can be approximated by a root I' of g(2) which 
is unstable, g'(I*) > 0. We choose I' to be the closest unstable root of g ( l )  to 12. 

At low 6, there are typically another one or two smaller unstable roots but they are 
much smaller than the pulse width w and are hence meaningless. Our model then 
predicts that any two identical pulses on the same substrate separated by a distance 
less (larger) than I' will attract (repel) each other irreversibly. The two-hump solitary 
pulse hence becomes a transition state for coalescence. At exactly I * ,  more precisely 
12, the unstable transition state can be sustained indefinitely as in figure 6b. Note 
the resemblance of the asymptotic state in figure 6b to the two-hump bounded pair 
in figure 14. Note also that the values of I2 and I' are of the order of the pulse 
width w in table 1. The accurate estimate of 12 by I' is then rather surprising since 
the Melnikov theory should only be valid when the two pulses are further separated 
than 1'. We are unable to explain this coincidence. Our numerical experiments with 
the actual two-hump solitary waves are also consistent with those of figures 5 and 6 
- slight perturbations leads to either coalescence or repulsion. The passage through 
the transition state represented by this unstable bounded pair with separation I' is 
evident in figures 5 to 7 and figure 12. Every close encounter seems to evolve through 
this two-hump state regardless of whether coalescence actually takes place. It is 
also observed in Liu & Gollub's experimental tracings for binary interaction on an 
inclined film. We also note that in the repulsion case of figure 5b and 6a, the two 
pulses approach a stable bounded pair whose separation is larger than 1'. 
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FIGURE 15. Phase-plane trajectories of dynamical system (4.14) for 6 = 0.03 showing the 
bounded-pair transition state as a saddle point and its stable manifold as a boundary for the 
domain of attraction of the coalescence phenomenon. Coalescence experiment with I(0) = 25 yields 
h,(O) = 0.26 which is close to the 0.21 value on the stable manifold. Approximation (4.17) which 
yields &(O) = 0.14 is also shown. The deviation occurs at the inner region close to I' where the 
interaction dynamics is as important as the outer decay dynamics. 

It is convenient to replace 2 by 2 in (4.13) to yield 

d 1  
iji (2) = (: 1;) (:> + ( " ) ) .  (4.14) 

The phase-space trajectory of (4.14) is shown in figure 15. It is clear that the 
transition state is actually a saddle point whose stable manifold demarcates initial 
conditions which lead to coalescence from ones that do not. These initial conditions 
are determined only by the initial excitation of the back pulse, as measured by 2(0), 
and the initial separation I(0). The degree of excitation of the back pulse can also 
be measured by h(0) and i(0). The numerical experiments of figures 5 and 6 then 
correspond to the initial condition to either side of the stable manifold and right on 
it. This stable manifold can be estimated by exploiting the different length scales of 
the long-range decay and the short-range interaction. Away from the saddle point, 2 
and I decay as in (4.3) and (4.4), which can be combined to yield 

2 = 2(0) + y(1- I(0)). (4.15) 

This is a good approximation of the long-range dynamics except within a small 
neighbourhood of the saddle point when the short-range forces in g(1) become 
important. However, since I(O)%I* and 2(0)%0, it is a good approximation to assume 
that (4.15) goes through the saddle point to obtain an estimate of the stable manifold 
and hence a condition for coalescence : 

2(0) = y ( l ( 0 )  - 1.). (4.16) 
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Converting to fi(0) by the correlation 2 = 2.4fi discussed earlier, we get 
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Y 
2.4 

i(0) = - (I(O) - l * ) .  (4.17) 

This then represents an estimate of the critical separation l(0) for coalescence for a 
binary pair whose back excited pulse has a degree of excitation of fi(0). 

As seen in figure 15, it represents a good estimate of the stable manifold although 
fi(0) is underpredicted owing to the inner region near the transition-state saddle point. 
We have carried out a series of numerical experiments with a stationary pulse in 
front and an excited pulse at exactly I(0) = 25 units behind it. The excited pulse 
has an incremental amplitude over the stationary pulse of fi(0). We adjust this h(0) 
until a critical excitation is found which demarcates coalescence from repulsion. The 
measured critical values of fi,(O) are compared to the predicted one of (4.17) in 
table 1. Without including the slow dynamics of the non-zero eigenvalue in figure 11, 
we do not expect our theory based on the two perturbed zero modes to be accurate 
for 6 < 0.03. For 6 > 0.03, however, the theory is of the same magnitude as the 
exact value, which is quite acceptable considering the approximations made. In fact, 
criterion (4.17) should break down when the interaction parameters R and S become 
large since the inner region shown in figure 15 then becomes significant. However, as 
seen in table 1, while the prediction improves at small 6 where R and S are small, it 
remains quite acceptable at larger 6 values, given that (4.17) typically underpredicts 
as shown in figure 15. 

5. Discussion 
Although we have constructed a theory for binary interaction, application of the 

theory to the multi-pulse system of figure 1 still requires some work. The theory was 
developed by using the pulse on a unit substrate as a reference. The pulses in figure 1 
lie on substrates much smaller than unity and a change of reference pulse to recalculate 
the coefficients in table 1 must be done with the help of transformation (3.4). More 
difficult, however, is the estimate of the degree of excitation due to coalescence. One 
approach is to find a pulse with double the mass and use the difference in amplitude 
between this larger pulse and the original pulses before interaction as a measure of 
excitability fi(0). The asymptotic behaviour of the pulse dynamics at large 6 shown in 
table 1 may allow us to develop a completely analytical description of the equilibrium 
separation and the evolution towards this equilibrium seen in figure 2. This asymptote 
must, of course, be recalibrated for different reference pulses but even the calibration 
may benefit from an analytical elucidation of the asymptotic behaviour at large 6. We 
note that the coalesced mass does not resemble a solitary pulse initially but it decays 
rapidly, with a decay rate measured by the stable point eigenvalue shown in figure 11, 
such that a solitary pulse emerges soon afterwards. This is shown in figure 12 where 
the amplitude of a pulse generated by coalescence is seen to approach the slow y decay 
of a solitary pulse within 3 units of time. This is compared to the slow exponential 
decay of an excited pulse which takes about 20 to 50 units as measured by y-'. This 
suggests that the coalescence event can be considered instantaneous in the theory for 
the full dynamics. Finally, the ad hoc manipulation of the inner products to estimate 
y should be carried out more rigorously by including the continuous spectrum. 

This work is supported by DOE under the Engineering Research Program. 
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Appendix. The adjoint eigenvalue problem 
Using the Lz inner product, 

(4 a )  = / l ( U I U l  + UZD2)dX. 

the adjoint operator to L of (6 )  is defined as 

(u, Lu) = (Ltu, u )  
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After standard integration by parts and index change, the adjoint operator is found 
to be 

where 

with the same bounded boundary conditions as the eigenvalue roblem (3.1). It is 
quite obvious that a null eigenfunction of the adjoint operator L F is 

where d is a constant. Another null eigenfunction L1 was found numerically whose first 
component cp: goes to zero at the infinities but its second component cp: approaches 
-1 at -a and +1 at +a. This null eigenfunction is shown in figure 10. 
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